An Introduction to Groundwater Issues at Mine Sites

Produced by: R.V. Nicholson, Ph.D.

Topic 7: Contaminant Migration in Groundwater Systems

Contamination Migration in Groundwater Systems

Example Sources of Contamination

- Holding ponds (unlined / leaky)
- Tailings (with process water / other lechate)
- Waste rock (reactive eg. acidity)
- Fuel spills
- Process chemical spills
- Smelter gases (outfall as particulate / in precipitation)

Process Contributing to Transport

Advection

- migration with water flow

- Dispersion
 - mixing and dilution during flow
- Diffusion

- slow, random concentration driven migration

Advection

Depends on velocity

- $\nabla = q/n = k/n dh/dl$
- Distance = ▼ * t

Dispersion

- Mixing at boundaries of plume
- Due to
 - Microscopic effect flow around grains
 - Macroscopic effects variation in flow rates in layers etc.

 Causes contaminations to travel "faster" (at more dilute concentrations) and linger longer when rehabilitation is applied

Dispersion

Diffusion

Fick's Law • F = -D dc/dxWhere: F is flux [M L⁻² T⁻¹] C is concentration [M L-3] x is distance [L] D is proportionality constant called the Diffusion Coefficient [L² T⁻¹]

Comparing Effects of Advection, Dispersion and Diffusion

- In high K systems (sands and gravels) advection dominates
- In low K systems (clay) diffusion dominates
- At screening level calculations it is convenient to select one OR the other condition

Example: Estimating Travel Time

 Estimate the travel time for tailings water to migrate to a river via groundwater

Example: Estimating Travel Time

Assume

- Porosity = 0.40
- Steady flow
- Constant hydraulic gradient

Hydraulic gradient dh/dl = (30.85-28.85)m/200m = 2/200 = 0.01 Velocity V = K/n dh/dl = 1X10⁻⁵ms⁻¹/0.40 * 0.01 = 2.5X10⁻⁷ms⁻¹

= 7.9 ma⁻¹

Time

Time = distance/velocity = $200m/7.9 ma^{-1} = -25a$

[if k=1X10⁻⁷ (silt); Time = 2,500 a for same gradient]

Flow and Transport in Fractured Rock

Non porous

Porous

Contaminant Migration in Porous Media

Plume Migration in Fractured Non-Porous Rock

Plume Migration in Fractured Non-Porous Rock

Extent of Plume

Significance of Flow Through Fractures

- May be non-uniform (follows fractures)
- Complex to monitor (hit and miss)
- Lower porosities than porous media / much higher velocities and shorter travel times

Example: Travel Time thought Fractured Granite

Example: Travel Time thought Fractured Granite

Assume

- Porosity = 0.004
- Steady flow
- Hydraulic gradient 0.01

Velocity V = k/n dh/dl = 1X10⁻⁷ms⁻¹/0.004 * 0.01 = 2.5X10⁻⁷ms⁻¹ = 7.9 ma⁻¹

Time

Time = distance/velocity = 200m/ 7.9 ma⁻¹ = \sim 25a

This value is same as the example with more permeable sand k=1X10⁻⁵ms⁻¹

Effect of Dispersion on Travel Times

Effect of Dispersion on Travel Times

Lower concentrations arrive earlier as a result of dispersion. Important if low relative concentrations trigger regulatory or environmental limits

Effect of Dispersion on Travel Times

Lower concentrations arrive earlier as a result of dispersion. Important if low relative concentrations trigger regulatory or environmental limits

Attenuation and Retardation of Contaminants

- Many dissolved chemical constituents "react" with geologic media and thereby move slower than groundwater
- Reactions including "sorption", ion exchange and mineral precipitation
- A simple "model" for attenuation is based on the "distribution" between water and solids is known as the distribution coefficient (Kd)

Distribution Coefficient (Kd)

- Good for many constituents at low concentrations
- Usually not valid over a wide range of concentrations or geochemical conditions
- units of mL/g or L/kg are common

Retardation Coefficient (R)

- R = 1 + Kd P_b/n Where: P_b= bulk density (kg/L or g/cm³) n = porosity (unitless) Kd = distribution coefficient (mL/g or L/kg)
- Generally P_b is in the range of 3 to 6 kg/L for unconsolidated sediments
- So that $R \cong 1 + 4$ Kd (so $R \ge 1$)

Velocity of Retarded Solutes (v_s)

- V_s = V_w / R
 Where v_w is the average velocity of the groundwater
- For example, in sand if the following Kd values fo arsenic (As) and Ra-226 would give:

	Kd (kg/L)	R
As	1.3	6.2
Ra-226	1000	4300

For the groundwater travel time calculated in a previous example:

Substance	Travel Time
water	25a
As	155a
Ra-226	107,500a

Factors affecting Attenuation (Kd values)

- Metals generally have higher attenuation in organic materials (swamps, lake sediments etc.)
- Clays result in higher attenuation
- Iron oxides (rusty red-brown colour) can also cause higher attenuation
- Attenuation is higher in porous materials than in fractured rock
- Specific chemical reactions can result in high attenuation (detailed chemical modelling maybe appropriate)

Flux and Loading Rates

- Mass Flux = Rate of mass crossing an area per unit time [M L⁻² T⁻¹]
- Loading Rate = Mass entering / leaving per unit time [M T⁻¹]
- In groundwater: Mass Flux = C_i * q_i where q_i is the volumetric flux [L³ L⁻² T⁻¹] Loading Rate = C * Q Where Q is the flow rate [L³ T⁻¹]

Example: Tailings Near a River

Groundwater below tailings has a cyanide level of 100 mg/L with no attenuation/ degredation. What is the cyanide flux to the river?

Calculate:

- $q = k dh/dl = 1X10^{-5} m s^{-1} = 1X10^{-7} m s^{-1}$
 - = 3.15 m a⁻¹ or 3.15 m³ m⁻² a⁻¹

If C = 100 mg L⁻¹ = 100g m⁻³ = 0.1 kg m⁻³ Then mass flux = C *q = 0.1 kg m⁻³ * 3.15 m³ m⁻² a⁻¹ = 0.3 kg m⁻² a⁻¹ to the river

Tailings and River Example (con't)

The contaminated groundwater zone is 10m deep and 200m wide (along the dam) What is total loading of cyanide to the river? Calculate:

- q = Q * A
 - $= 3.15 \text{ m}^3 \text{ m}^{-2} \text{ a}^{-1} * (200 * 10) \text{m}^2$

 $= 6300 \text{ m}^3 \text{ a}^{-1}$

Mass load = Q * C

- $= 6300 \text{ m}^3 \text{ a}^{-1} * 0.1 \text{ kg m}^{-3}$
- = 630 kg a⁻¹ to the river

Example: Considering Dilution

What flow rate in the river is necessary to assimilate the average annual cyanide load if the concentration in the river must not exceed 1mg/L? (Assume that cyanide upstream is negligible).

Calculate: Mass load in river = 630 kg a⁻¹ to the river If C = 1 mg L⁻¹ = 1 g m⁻³ = 0.001 kg m⁻³ Then Q = Load / C = 630 kg a⁻¹ / 0.001 kg m⁻³ = 630,000 m³ a⁻¹ = 1726 m³ day⁻¹ = 20 L s⁻¹

