Topic 2:

Groundwater Movement

Groundwater movement - Darcy's Law

Groundwater movement - Darcy's Law

The Darcy Equation

$q=K \mathrm{dh} / \mathrm{dl}$

where:
q is the volumetric flux (Darcy Velocity) in Length/Time ($\mathrm{m} \mathrm{s}^{-1}$)
or Volume/Area/Time $\left(m^{3} m^{-2} s^{-1}\right)$
K is the Hydraulic Conductivity in Lengtih/Time $\left(\mathrm{m}^{-1} \mathrm{~s}^{-1}\right)$
$\mathrm{dh} / \mathrm{dl}$ is the Hydraulic Gradient in Lengith/Lengith (unitless)
Alternatively: $Q=K A \mathrm{c} / \mathrm{s} / \mathrm{cd} \mathrm{J}$
Where:
Q is the Flow Rate in Volume/Time $\left(m^{3} s^{-1}\right)$
A is the Area perpendicular to the Flow direction (sri²)

Hydraulic Gradient - The Driving Force

Lateral vs. Vertical Gradients

Hydraulic Conductivity

- K based on water flow
- Ease with which water moves through a geologic medium for a unit gradient
- A proportionality constant in Darcy's Law; q = K dh/dl

Permeability

- k - function of geologic material only
- k - a function of grain size and fracture opening
- $k=C \times d^{2}$ where C is a proportionalitity constant and d is the representitive grain size diameter
- k related to hydraulic conductivity
 is viscosity)

Hydraulic Conductivity (con't)

Estimating Groundwater Movement

- If Q is the flow rate $\left(m^{3} a^{-1}\right)$ and A is the crosssectional area $\left(m^{2}\right)$ the $Q / A=q$ is the specific discharge (volumetric flux). So that $\mathrm{q}=\mathrm{K}$ dh/dll

Example: If $K=1^{*-1} 10^{-5} \mathrm{~ms}^{-1}=3.2 \times 10^{2} \mathrm{mner}^{-1}$ and

$$
\mathrm{dh} / \mathrm{dd}=1 \mathrm{~m} / 100 \mathrm{~ms}=0.01
$$

Then
$\mathrm{q}=3.2^{* 1} 10^{2} \mathrm{maa}^{-1} * 0.01=3.2 \mathrm{mal}^{-1}$
Is this a velocity?

Specific Discharge vs. Velocity

$\mathrm{q}=$ volumetric flux (volume of water passing a unit area per unit time or $m^{3} m^{-2} a^{-1}==>m a^{-1}$)
$\mathrm{v}=$ average linear velocity

Specific Discharge vs. Velocity

$V=q / n=k / \Omega \mathrm{d} / \mathrm{h} / \mathrm{cd}]$
Average velocity

Example of Average Velocity

- From previous; $q=3.2 \mathrm{~m}^{3} \mathrm{~m}^{-1} \mathrm{a}^{-1}$ (typical of sand) with $n=0.35$ (good approximation)
- $\mathrm{v}=\mathrm{q} / \mathrm{n}=3.2 \mathrm{~m}^{3} \mathrm{~m}^{-1} \mathrm{a}^{-1} / 0.35$

$$
=9.1 \mathrm{ss} \mathrm{It}^{-1}
$$

- Average linear velocities are always greatier than specific discharge (or Darcy's Velocities) because porosities are less than I

Estimating Flow Direction in the Field

THEORY

1. Determine water levels
2. Plot or contour surface
3. Select slope perpendicular to equipotentijals
4. Plot flow directions

Estimating Flow Direction in the Field

PRACTICE

1. Only a few points are generally available (minimum of three required)
2. Interpolate water levels using wells, surface countours, stireans, lakes eic
3. Plot flow directions / measure graclienits

Estimating Flow Direction in the Field

Estimating Flow Direction in the Field

Both the direction of groundwater movement and the hydraulic gradient can be determined if the folllowing datia are available

- The relative position of three wells
- The distance between each well
- The totall head at each well

Estimating Flow Direction in the Field

1) Identify the well with the intermediate water level. We\|l $2: \quad h_{1}=26.20$
2) Calculate the position between well 1 and well 3 where the water level is the same as well $2 . ~ x=583 \mathrm{~s}$
3) Draw a line between the intermediate well and the point idenitified in step 2. The head along this line is 26.20 m 4) Draw a perpenclicular line throught the well with the lowest (or highest) heacd
4) Divide the clifierence betiveen the head of the well arich that of the conitour by the distance between the well ansd the contous. This is the fiydraulic gradient. $=0.00098$
