Use of Radio-Tracers in Evaluation of Sluice-box Efficiency

Outline

- Part 1
 - Introduction to Radio-Tracers
 - Summary of Clarkson's Work
 - Some Results Obtained
 - Some Limitations
- Part 2
 - Summary Of Research on Alternative Techniques (to be presented sometime later)

What are Radio-Tracers?

- Selected gold particles (¹⁹⁷Au) irradiated, within nuclear reactor, to ¹⁹⁸Au
 - One neutron gained
 - Gamma/Beta radiation released
 - Identifiable with scintillometer
 - Short half life
 - Decays back to gold (loss of neutron)

The Au Radioactive Isotopes

Isotope	Mass	Half-life	Mode of decay
¹⁹⁴ Au	193.96534	1.64 d	EC to ¹⁹⁴ Pt
¹⁹⁵ Au	194.965017	186.12 d	EC to ¹⁹⁵ Pt
¹⁹⁶ Au	196.966551	6.18 d	EC to ¹⁹⁶ Pt; β^{-} to ¹⁹⁶ H
¹⁹⁸ Au	197.968225	2.694 d	β^{-} to 198 Hg
¹⁹⁹ Au	198.968748	3.14 d	β^{-} to ¹⁹⁹ Hg

After Mark Winter, University of Sheffield, 2000

Naturally Occurring Gold Isotopes

- There are 35
- <u>Au-171 Au-172 Au-173 Au-174 Au-175 Au-176 Au-177 Au-178 Au-179 Au-180 Au-181 Au-182 Au-183 Au-184 Au-185 Au-186 Au-187</u> <u>Au-188 Au-189 Au-190 Au-191 Au-192 Au-193 Au-194 Au-195 Au-196 Au-198 Au-199 Au-200 Au-201 Au-202 Au-203 Au-204 Au-205</u>
 - Taken form "Table of the Nuclides", by Jonghwa Chang, Korean Atomic Energy Research Institute, 2000

Use of Radiotracers

- Enables backward particle tracking
 - (About 75) irradiated particles are introduced into operating sluicebox; tracer in three size ranges of 600, 300 and 150 microns
 - Each size fraction introduced separately, distribution mapped before introduction of the next size fraction
 - Sluicebox operated for predetermined period
 - Sluicebox stopped, distribution of radioactive particles mapped (location tracers are recovered within box)
 - Gold recovered by standard methods, amalgam digested with HNO₃, tracers separated and counted

Results

- Confirms that most (90%) of gold is recovered in first 1/3 of sluice length (Fricker, 1984)
- Average increase in radiotracer recovery of 28%
 - Conclusion that (Mahdia) sluiceboxes were too wide for flow rates (flow velocities too low)
 - Achieved by narrowing sluiceboxes (Mahdia), fitting angle iron and expanded metal riffles and Nomad matting

Native Gold Vs. Radiotracer

MINING

Limitations

- Influence of Gold Grain Shape
 - Corey Shape Factor
 - NA gold irradiated and imported; morphology different from local gold, therefore conclusions on recovery of insitu (native) gold may be misleading
 - Alternative: irradiate gold from location (costly)
- Technique Proprietary
 - Non transferable
 - No long term benefit to Guyanese (will always need Clarkson)

Any Alternatives?

• Equipment With Superior Recovery

- Knelson Concentrator
 - Recovers 89-95% of gravity recoverable gold
 - Evaluate head grade and tail grade, of representative fraction
 - Assess change in (gravity recoverable gold) recovery
 - More representative than assessment of recovery based on 75 particles of 3 sizes

