

C La Fleur¹, R Couture², S Gordon¹, J Osborne¹, C Mc Almont¹

¹Ministry of Health, ²Natural Resources Canada

Introduction

Introduction slides 3-5

Methodology slides 6-9

Results slides 10-18

Conclusion slides 19-21

- Mercury is widely distributed & persistent in the environment
- High levels of Hg cause permanent neurological & kidney impairment
- Exposure of pregnant women to Hg hazardous to the foetus
- Hg levels in humans measured in blood, urine or hair

Introduction

- Hair Hg good marker for serum Hg levels and of Hg toxicity
- Mean hair Hg of healthy adults 0.4-6.5 μg/g
- In pregnant women toxic effects on foetus occurs at maternal hair Hg of 10-20 μg/g
- Hair Hg levels associated with neurological damage in adults > 50 μg/g

- Widespread Hg use in gold mining in Guyana
- Studies done in neighbouring countries have shown high hair Hg content in residents of mining communities
- Recent Guyanese studies suggest mining might be contributing to elevated Hg levels among indigenous people

- Study type:- Cross sectional
- Objectives of the study:-
 - To determine the hair Hg content in residents of interior communities
 - To determine risk factors for high Hg levels

- Selection of communities based on mining practices:- gold mining and non-mining
- Recruitment of study participants:-
 - Participation was voluntary
 - Informed consent sought from participants for hair samples
 - Questionnaires to gather risk factor information applied by researchers

- Hair samples taken,
 labelled and stored in plastic sampling bags
- Samples transported to Canada for Hg determination

- Data management
 - Electronic database developed (SPSS version 10 for Windows)
 - Description of sociodemographic characteristics of participants
 - Mean hair Hg content of all participants

- Data management con't
 - Description of hair Hg content by epidemiological characteristics using Students t-test for determination of statistical significance:-
 - Gender
 - Age group
 - Permanent residence (interior vs coastland)
 - Ethnicity
 - Region & Community
 - Duration of time in community
 - Main source of protein

Communities visited and # of samples taken:-

- 108 samples taken in 8 communities
- Region 1

Eyelash	5

- Region 7
 - Kurupung19
 - Paruima18
 - Isseneru
- Region 8
 - Mahdia11
 - Tumatumari 16
 - Micobie15
- Region 9
 - Gunns 16

Sociodemographic characteristics of the sample population

Gender

Females	58.3 %	(63))

Male 41.7 % (45)

Ethnicity

Mixed 15.0 % (16)

AfroGuyanese 11.2 % (12)

IndoGuyanese3.7 % (4)

Permanent residence

Interior 85.2 % (92)

• Coast 14.8 % (16)

Hair Hg content for all participants (n=108)

Mean 11.6 μg/g

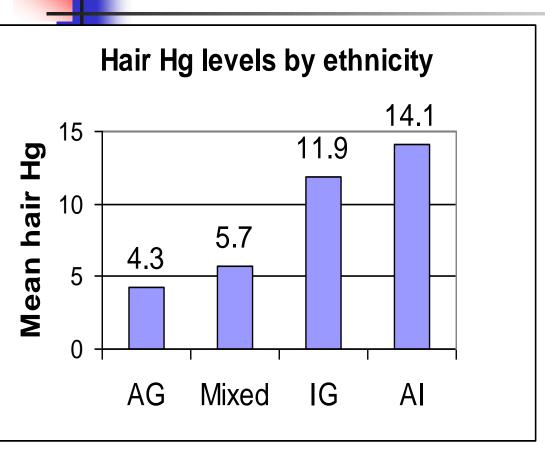
• Minimum $0.5 \mu g/g$

Maximum 35.8 μg/g

46.3 % had mean hair Hg levels > 10 μg/g

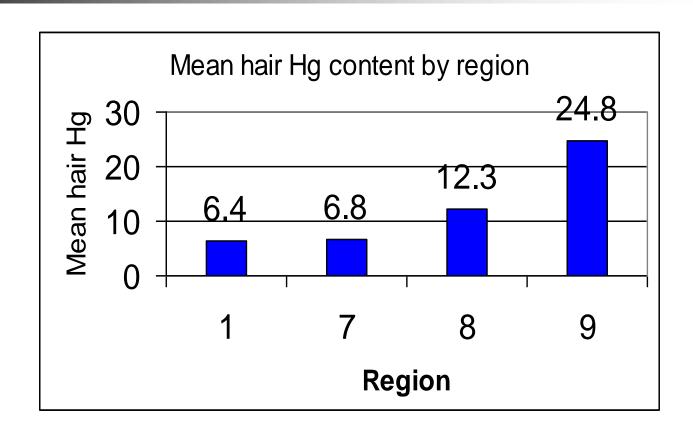
47.6 % of women

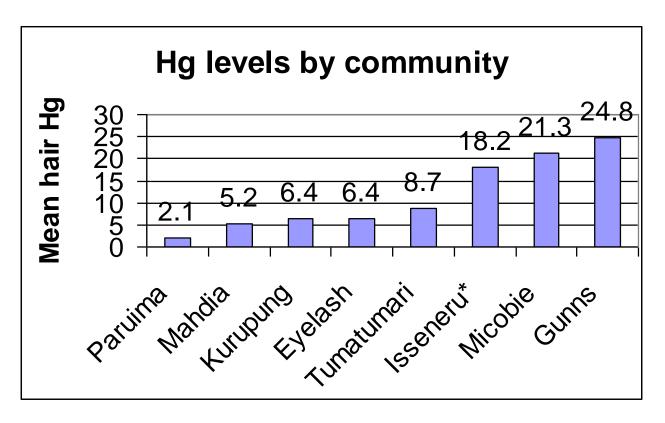
Interior

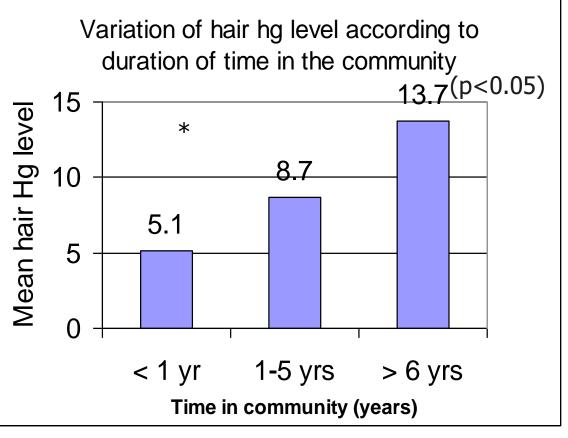

Coast

Gender	Mean Hg level	p-value			
Male	12.4 μg/g	ns			
Female	11.0 μg/g	-			
Age group					
13-19	13.1 μ g/g	-			
20-45	10.2 μ g/g	ns			
46-76	14.2 μ g/g	ns			
Permanent residence					

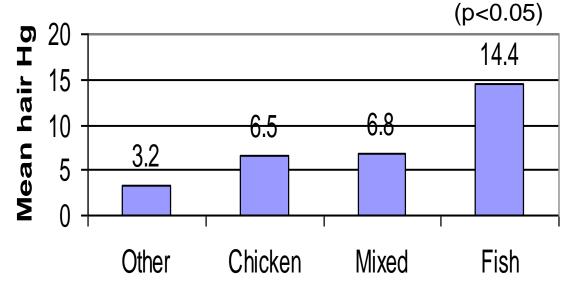
12.4 μ g/g


 $6.5 \mu g/g$


0.005


Hg of Amerindians
>Afroguyanese
& persons of mixed descent
(p value < 0.05)

Amerindians 15 & 10 times more likely to have Hg>10 µg/g than Afroguyanese (OR 15.6 95 % CI 1.9-127.5) & persons of mixed race (OR 9.9 95 % CI 2.1-47.6)



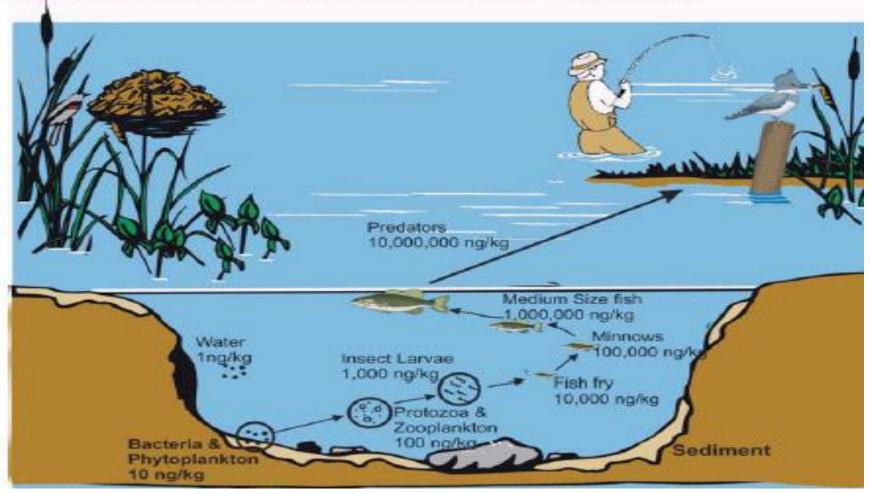
Mean hair Hg Paruima significantly < other communities (p< 0.05) Mean hair Hg Gunns > others except Iss & Micobie (p<0.05)

Long term residents 7 times as likely to have Hg $> 10 \mu g/g$ than newcomers OR 7.4 95 % CI 2.0-27.6

Influence of diet on mean hair Hg content

Persons whose main source of protein was fish 6 times as likely to have Hg>10 μg/g in comparison to those who consumed chicken (OR 6.1 95 % CI 1.9-20.0)

Conclusion


- Mean hair Hg content significantly higher among residents of:
 - Isseneru, Micobie and Gunns when compared to other communities
 - Amerindian ethnicity as compared to other ethnic groups

Conclusion

- Mean hair Hg content significantly higher among long term residents when compared to newcomers
- Diet was the most important determinant of elevated hair Hg levels
 - Persons with high dietary intake of fish were significantly more likely to have high hair Hg levels

Pathway of Hg in the environment

Figure 2.2. Typical Pattern of Mercury Biomagnification.

Acknowledgements

Mr Ayalew (Gencap Guyana) GGMC for logistical support