Febrile illnesses in mining communities: Are we correctly diagnosing them?

C La Fleur, J Osborne, C Mc Almont, S Gordon, D Primo, K Craig

Introduction

- Hinterland & mining communities characterised by:
 - Lower skilled health workers
 - Poor health and laboratory infrastructure
 - Recent re-emergence of malaria
 - Anecdotal evidence of emergence of other infectious diseases such as typhoid
- Questions surrounding accuracy of diagnosis of febrile conditions in the interior

Methodology

- Study type- Cross sectional
- Objectives:-
 - To describe the social and environmental conditions that may contribute to the emergence & re-emergence of infectious diseases
 - To determine the aetiology of febrile illnesses in interior communities

Methodology

- Several mining communities selected and visited (Mahdia, Kurupung, Eyelash, Tumatumari, Isseneru)
- Residents informed of nature of study and persons with fever invited to participate
- Questionnaires applied to gather risk factor data
- 2 blood samples taken and tested:
 - Dengue (IgM & IgG)
 - Widal test for typhoid fever
 - Blood culture for Salmonella typhi (causative agent of typhoid fever) & other microorganisms
- Water samples taken from reservoirs & tested for indicators of its suitability for consumption

Sanitation

- Excreta disposal
 - Pit latrines

85 %

- Majority poorly constructed & improperly sited
- WC 9 %
 - Most lack required quantity of water for proper cleansing
 - Septic tanks poorly constructed &
 - Improperly sited effluent emptied into creeks/rivers/valleys
- Other 6 %

Conditions of surroundings

Bush	43	%
------------------------	----	---

Garbage15 %

 Mostly non-biodegradable eg. plastic food wrappers, plastic bags, plastic bottles and food containers

Clean	12 %
	12 /

Waterholes9 %

Garbage disposal

Dumping	45 %
---------------------------	------

Burning26 %

Burying18 %

Mixed & other10 %

Water quality

- Kurupung
 - 3 samples
 - Mazaruni River (2)
 - Rubberized tank at health post
 - All microbiologically unsatisfactory (coliforms)
 - All chemically unsatisfactory
 - ↑pH, lead & total iron
- Mahdia
 - 2 samples from 2 creeks
 - ↑ pH, lead, total iron

Water quality

- Eyelash
 - 2 samples (vicinity of Arakaka creek & reservoir filled by spring from Mathews Ridge)
 - All microbiologically unsatisfactory (coliforms)
 - Chemically unsatisfactory
 - ↑pH total dissolved solids, turbidity, lead & aluminium

- Water Source and deading		Water	source	and	treatmen	t
----------------------------	--	-------	--------	-----	----------	---

Rain	67 %
Natural reservoirs (streams, creeks etc)	19 %
Mixed (rain + natural reservoirs)	9 %
Other	5 %
Water treatment	
Treatment of drinking water	31 %
No treatment of drinking water	69 %
Water treatment method	
Chlorination	82 %
Other	18 %

Malaria prevention measures

Use prevention59 %

No prevention41 %

Type of prevention

Mosquito nets76 %

Other24 %

- Dengue
 - 78 tests done
 - 6 positive (seroprevalence 7.7 %)
 - All with IgM antibodies indicative of active infections

Characteristic (n=78)

- Gender
 - Female
 - Male
- Ethnicity
 - Amerindian
 - Mixed
 - Others

Dengue seroprevalence

17.1 %

2.0 %

16.7 %

8.7 %

0

Characteristic (n=78)

Age group

20	20
70	1-39

- **40-59**
- Other age groups

Community

- Kurupung
- Mahdia
- Tumatumari
- Eyelash

Dengue seroprevalence

6.5 %

14.3 %

0

10 %

6.7 %

6.7 %

5.6 %

Tab. 1 Clinical manifestations of patients with dengue fever

Manifestation	% of patients
Fever	100
Headache	83.3
Muscle pain	83.3
Joint pain	83.3
Nausea	66.7
Constipation	33.3
Vomiting	16.7
Diarrhoea	0

Methodology

Risk factor behaviour

Use protection against mosquitoes

No protection

Dengue prevalence

59 %

6.5 %

41 %

9.4 %

Typhoid

- 77 Widal tests
- 46 persons negative
- 11 with Widal titre > 1:160 (seroprevalence 14.3 %)
- 4 with titre > 1:320 (seroprevalence 5.1 %)
 - 3 persons with H titre > 1:320 had negative O titres
- •5 persons with H titre > 1:160 had negative O titre

Tab. 2 Widal test results

Widal Titre	О	Н
Neg	63	50
1:20	1	0
1:40	2	2
1:80	6	11
1:160	5	10
1:320	0	4

Tab. 3 Clinical manifestation of persons with positive Widal tests

Manifestation	Widal >1:160 (%) n=17	Widal < 1:160 (%) n=67
Fever	93	81
Headache	78	80
Muscle pain	57	61
Joint pain	57	69
Nausea	57	48
Diarrhoea	41	24
Vomiting	28	10
Constipation	7	10

Tab. 4 Clinical manifestations of patients with positive

blood cultures

Manifestation	% (n=11)
Joint pain	82
Fever	73
Headache	73
Muscle pain	64
Nausea	45
Diarrhoea	27
Vomiting	9
Constipation	0

- •70 blood cultures done
- •11 positive cultures
 - •7 Klebsiella
 - •4 Staphylococcus
 - •0 Salmonella typhi
- Many multi-resistant to many antibiotics

Tab. 5 Febrile illnesses in interior communities

Manifestation	DF (%)	Widal >1:160 (%)	Pos culture (%)
Fever	100	93	73
Headache	83.3	78	73
Muscle pain	83.3	57	64
Joint pain	83.3	57	82
Nausea	66.7	57	45
Constipation	33.3	7	0
Vomiting	16.7	28	9
Diarrhoea	0	41	27

Conclusion

- Generally poor sanitary and hygienic conditions in mining communities
- These conditions are favourable to the transmission of infectious diseases
- Frequent acute illnesses among miners lead to lost of time from work and may impact adversely on their productivity

Conclusion

- Recent evidence of dengue transmission and the emergence of other diseases (Klebsiella infection)
- Other febrile illnesses had similar manifestations to malaria
- Need for establishment of fever management protocols for health workers of interior locations